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4.6A THE RELATIONSHIP BETWEEN STRENGTH OF TURBULENCE
AND BACKSCATTERED RADAR POWER AT HF AND VHF

W. K. Hocking

Max-~Planck-Institut fur Aeronomie
D-3411 Katlenburg-Lindau
Federal Republic of Germany

ABSTRACT

The formulae relating turbulence and other atmospheric parameters to back-
scattered power for radar observations are reviewed, The paper comnsiders
primarily the case of scatter from turbulent irregularities which have scales
corresponding to the range of isotropic, inertial range turbulence, although
some brief discussion of the applicability of this assumption is given. A new
formula is introduced for the mesosphere which relates ionospheric electron
densities to backscattered power.

INTRODUCTION

Discussions and the relationship between the intensity of turbulence and
backscattered radar signal strengths have, in recent literature, been largely
based upon the Kolmogoroff theory of imertial range isotropic turbulence (e.g.,
BATCHELOR, 1953; TATARSKI, 1961, 1971). This is not to say, however, that this
is the only possible approach, For example, BOOKER and GORDON (1950) and STARAS
(1952) adopted an alternative procedure for examination of turbulence (e.g., see
review by GAGE and BALSLEY,1980). This second approach has not been as
extensively applied as that due to Kolmogoroff, but, as pointed out by GAGE and
BALSLEY (1980), it does allow extensions to conditions of anisotropic turbu-
lence. Whether in fact the assumptions of inertial range, isotropic turbulence
are valid for the atmosphere is to some extent an unresolved topic. For example
the inertial range theory requires high Reynolds numbers (BATCHELOR, 1953,

p 116), and Reynolds numbers in the atmosphere tend to be only moderate.
Furthermore, observations of turbulence in the stratosphere often show very thin
(*50-200 m thick) well-defined layers of turbulence (e.g., CRANE, 1980). This
is not predicted by the Kolmogoroff theory. WNevertheless, it is mnormally
assumed that Kolmogoroff theory still applies within the layer, at scales
smaller than the layer thickness, BOLGIANO (1968) has proposed a turbulence
model in which thin well-mixed layers of turbulence form, and in this model
radio-wave backscatter is not produced by the turbulence within the layer but by
discontinuities in refractive index at its top and bottom. The scatter from
such discontinuities should be very different in character to turbulent scatter.
It should show an aspect sensitivity, with most scatter coming from the verti-
cal, and should have slow fading times. Such "specular reflections" are well
known to occur in the stratosphere at VHF (e.g., GAGE and GREEN, 1978; ROTIGER
and LIU, 1978), but whether the mechanism proposed by Bolgiano explains these
reflections has not been resolved., Other refinements to Kolmogoroff theory have
been gresented by some authors (e.g., HILL and CLIFFORD, 1978; WEINSTOCK,
1978a).

Despite these potential problems, however, the Kolmogoroff theory of
inertial range turbulence appears to model the atmosphere reasonably well in the
range of scales for which it is applicable. Therefore this model will be the
main one discussed in this short essay.

A short introduction of the formulae of the inertial range theory will
first be given, and then it will briefly be shown how these formulae extend to
radio~wave scattering. Some discussion on the accuracy of these formulae will
then follow.
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It will be assumed initially that the radar looks at the atmosphere at an
off~zenith angle, so that the role of specular reflectors can be ignored, The
complexities introduced by specular scatter will not be discussed in detail;
more complete discussions can be found in, for example, HARPER and GORDON
(1980), and ROTTGER (1980a,b).

INERTIAL RANGE TURBULENCE

Atmospheric turbulence causes random fluctuations of various atmospheric
parameters, such as density, velocity, refractive index, etc, The statistics of
the turbulence is usually described using one of these parameters. However, the
parameter chosen to describe the fluctuations must be a passive tracer. This
means that its statistical properties must not depend on the position in the
turbulence patch., For example, density is not a good passive tracer, as dis-
placement of a parcel of air vertically alters its density. This matter was
discussed more deeply by TATARSKI (1961), and will also be considered again
shortly. Potential temperature is a good tracer., So are the velocity fluc-
tuations,

For the present, let this passive tracer by a scalar, denoted by 8.

There are at least two ways to describe the statistical properties of the
turbulence. One way 1s by means of the structure function, viz

D, () = <o - 0G| 1

Here, x represent a position vector, and r a spatial displacement, <> repre-
sents an average over space and time. It can be shown that for inertial range
turbulence,

Dy () = ¢, ’r 2/3 (2)

e.g. TATARSKI (1961), where Ce2 depends on the intensity of turbulence, The
turbulence fluctuations can also be expressed as the Fourier sum of wave numbers
k = 2n/A, A being the Fourier scale. Then TATARSKI (1961) showed that the
spectrum of fluctuations is

~11/3

¢e(k) 0.033 €, 2 |x| (3)

A normallzatlon has been chosen such that jff ¢p (B dk = <62,
[=-]
It can be shown (TATARSKI, 1961) that C 2 is related to the outer scale of
turbulence, Ly (i.e., the approximate transition scale between the inertial and
buoyancy ranges of turbulence) by the relation

¢, = afars 43 (&2

(4)
Here, a is a constant, =2.8 (e.g., VANZANDT et al., 1978), o' is a constant_
which is approximately 1., and (d6/dz) is the gradient of the mean quantity 0.

The formulae (3) and (4) form the basis of theories which relate back-
scattered radar power to turbulence. However, before discussing how this is
done, some other spectral forms should be briefly discussed, It is important to
note that the spectral form shown in (3) is not the only form which appears in
the literature. It is the full three~dimensional spectrum. But at times the
spectrum of wave numbers with magnitude k = Ikl is given viz

Eg(k) = 4nk29, (k) = 0.132n ¢ k773, (5)
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No distinction between the directions of the k vectors is made in this formula.
Another very important spectrum is the spectrum of fluctuations which would be
seen by a probe moving in a straight line through the turbulence. This is not
the same as (3), since that only looks at 1 scale direction. But for a probe,
all scales produce an effect along the path of the probe, but their “effective
scales" change because they are not all orientated along the probe path. Then
this produces a spectrum

Sg) = [ [ 4pWdkd, (6)
whence S (k) 20.25 ¢ %k™>/3 M

OTTERSTEN (1969) has emphasized the difference between (3) and (7), and pointed
out that (3) is applicable for radar experiments, whilst (7) is applicable for
in situ measurements, The two expressions should not be confused.

POTENTIAL REFRACTIVE INDEX GRADIENT

In considering backscatter of radio waves from the atmosphere, it is of
course necessary to look at the fluctuations in refractive index caused by the
turbulence, The refractive index n of air at centimetre and metre wavelengths
is (TATARSKI, 1961). :

n=1+10"0x (79/T) x (p + 4800 e/T) (8)

where T is temperature {absolute), p is pressure (millibars) and e is the water
vapour pressure. However, it is more convenient to express n as a function of
the potential temperature H and the specific humidity, q [= e/(1.62p)]. Then

n = n(p, H, q) 9)

But n here is not a good passive tracer. This can be seen by the following
consideration, Suppose an eddy moves from height z, to a height z,. Suppose
that at z; the eddy was in equilibrium with its enviromment, and that at this
height there was pressure pj, potential temperature H_ and specific humidity q..
Suppose that at height z,, the atmospheric pressure islpz, and the envirommental
H, q are H, and q,. However, at z, the parcel itself has H = Hy and q = 49
since it is assumed to have moved adiabatically. Of course the pressure in the
parcel is now pj. Hence the difference in refractive index between the parcel
and its enviromment at z, is

8o = n(z,, Py, Hys qq) - n(zy, Py Hys )
parcel environment
= (90 9H , 9m 3q

An = (BH 3% + 3q 3z) Az (10)
where Az = Zy = Zje
This is not simply the difference in refractive index at heights z, and Z,s
which would be

po= (222, @n3H 00 3gy,,, an

9p 9z dH 3z 3q 2z

The formula discussed in the previous section can be applied for refractive index
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with 6 = n, but in equatiom (4), the temm (d6/dz) should not simply be (dn/dz)
as given by (11), but rather, from (10),

dn _ 3n 2H , 3n dg,

EEi 3H 93z 9q 9z 12

This quantity is often denoted by M, and is called the generalized potential
refractive index gradient.

Fotf metre and centimetre scatter from the un-ionized atmosphere, (TATARSKI,
1961),

-6 .
T (1422225

The term T, is the adiabatic lapse rate.

In the stratosphere:and mesosphere, q = 0. However, once heights of greater
than 50-60 km are reached, scatter from turbulence is enhanced by the existence
of free electrons (ionization), and in this case M needs modification,

For these circumstances
n = n(N, vy (14)

Where N is the electron demsity, and v, is the collision frequency of electrons
with neutral particles., (Pressure and temperature fluctuations also produce
weak changes in n, as for the troposphere and stratosphere, but these effects
are very weak compared to the effects of N and Voo and so can be ignored).

HOCKING (1980, 1981) has shown that the appropriate generalized refractive
index gradient for the ionospheric D region is given approximately by

: v
dm (N 4T _dN  Ndpy , 30 “'m
e aN [T (dz + I‘a) dz + ¢} dz) + va oz °’ (13)

where p is the neutral air dénsity.
For the region 0-120 km, this equals

av

R _an “bye 2 Vn
M =y I G P Ta) g - (L4x10 DN+ dv_ oz (16)

At VHF in the D region n is related quite simply to N by the relation

n2 =1- ﬂ_l r, N AZ

where gais the classical electron radius, and ) is the radar wavelength, so
m/3v_ =0, and
m -
on _ 1 -1 2
SN 2" T, A .

At HF and MF, the relation between m and N is more complex (e.g., BUDDEN, 1965).
Thus Medepends on the potential temperature gradient, the electron density
gradient, and the neutral atmospheric density gradient,
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In deriving (15), it was assumed that when a parcel of ionosphere is
displaced, the ratio of electron density to mneutral density remains constant,
and that no change in the photochemical reaction rates occurs during such a
displacement. HILL and BOWHILL (1979) have suggested that this might not be
exactly true, but nevertheless equations (15) and (16) should provide a rea-
mmMe%ummof%.

SCALES OF THE INERTIAL RANGE

Before proceedlng to show how these turbulence formulae relate to radar
backscatter, it is important to illustrate over what scales they can be
applied.

At very small scales, the kinetic energy density contained by the eddies
is diminished due to viscous effects, and much of the turbulent energy is dis-
sipated as heat. This small scale range is often called the "viscous range",
At very large scales, buoyancy effects become important, and turbulent eddies
taken on a "pan-cake"-like appearance, with horizontal scales much larger than
their vertical dimensions.

An important scale for determining the boundary of the inertial-range to
viscous range transition is the Kolmogoroff microscale, defined by

- 30t 8 (17)

Here, v is the kinematic viscosity, and € is the turbuleént energy dissipation
rate. This is a scale well within the viscous range. The scale

%, = 7.4n (18)

is known as the "inner scale" (e.g., HILL and CLIFFORD, 1978) and defines the
approximate transition scales between the inertial and viscous ranges., (The
constant 7.4 is only relevant for air.)

The scale for determining the transition region between the inertial and
buoyancy ranges is (WEINSTOCK, 1978b)

1/2 © -3/2

= (21/0.62) ¢ B ,

(19)
where wp is the Brunt-Vaisala period of the atmosphere at the height of the
turbulence. This should not be confused with L in (4): they are different
parameters, as will be seen later.

The inertial range of turbulence strictly only applies for scales somewhat
less than LB and larger than 20.

Approximate values of L and k are shown in Figure 1. For a radar wave-
length ), backscatter occurs for scales of 2. Thus if a 50 MHz radar is used
(» = 6 m), then scatter should be possible from isotropic imertial range
turbulence up to altitudes of about 65-70 km. Figures similar to Figure 1l have
appeared elsewhere in the literature (e.g., GAGE and BALSLEY, 1980), and show
similar values for n and 20.

RADIO-WAVE BACKSCATTER

Having illustrated some appropriate formulae for relating refractive index
fluctuations to turbulence parameters, it is now necessary to determine how
these formulae relate to radio—wave backscatter.
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Figure 1. Typical inner and outer scales (ko and Ly respectively) for inertial-
range turbulence in the atmosphere. The formulae used are given in the text.
The profile of the Brunt-~Vaisala period is also shown. It was assumed that
the mean value of € was 10~1 W kg~l at 90 km, decreasing exponentially to 10-2
W kg~1 at 80 km. Between 80 and 60 km, this mean was taken at 10-2 W kg-1,

In the region 60-90 km, the bounds of the dotted areas correspond to turbulent
energy dissipation rates of 1/3 rd and 3 times these mean values. Below 40 km,
and downto the tropopause, the upper and lower limits of € were taken as 10-3
and 1075 W kg Lp and %, were assumed to vary smoothly between 40 and 60 km.
(The region between 30 and 80 km is perhaps the most uncertain part of the
graE Below the tropopause, ¢ was assumed to be limited between 10-%4 and

W kg~l.  Larger & values correspond to smaller Lo and larger L values
(1.e the inertial range widen at both ends, when & increases).

BOOKER (1956) has shown that the power backscattered from refractive index
fluctuations with mean square value N(k)dk at scales 4 = 2w/k, per umit solid
angle, per unit incident power density, and per unit volume (i.e., the cross
section of backscatter) is

o= [4 ©2/A2IN(K). (20)

(this expression is true at VHF, but at lower frequencies may not be) P(k) is
similar to ¢,(k) in equation (3) (6=n), but BOOKER (1955) used the normaliza-
tion .

m~% [[f N@adk, dk, dk, = [5a]?
Hence N(k) = (2m)3 ¢ (k). ’ (21)

. -1 .
For radar backscatter at wavelength A, k = 47 A 7, and so using (21) and
{29), and using (3) for ¢n(§),

4/3 C 2.,-1/3 (22)
n .

g ='.QO654H A
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Sometimes an alternative definition of backscatter cross section is used.
This is the total power which would be scattered if power were scattered iso~-
tropically with an intensity equal to that of the backscattered radiation, per
per unit incident power density, per unit volume of scatterer. It is often de~
noted by 5, and although this can at times be confused with the Kolmogoroff
microscale, this convention will be maintained here. Then

n = 41 o, (23)
and hence

n = 0.38Cn2 A3, (24)

as also derived by OTTERSTEN (1969). It should be noted that, at least for the
ionosphere, the wavelength dependence for n is more complex than a1 3, since
€ 2 is itself a function of wavelength, This can be seen by considering a
given patch of turbulence in the ionosphere. For this patch, there is a con—
stant electro& density structure constant, which we may denote by G_“ Then C
= (3n/3N)2 ¢ (e.g., HOCKING and VINCENT, 1982), and (3n/9N) is strongly
wavelength dependent, as has already been seen.

2
N

Now it is necessary to show how @ (or m) relates to the power received in a
backscatter experiment. Consider scatter from a height h. Then the peak power
per unit area incident at h is

P, = (PTcTeT)/(anhZ), (25)

where P .is the transmitter peak power, Gris the transmitter array directivity
and & 1s the transmitter efficiency. To obtain the power backscattered per
unit steradian, we simply multiply this by oV, where V (the "radar volume") is
the volume defined by the locus of the half-power points of the radar, and the
pulse length, The receiving array subtends a solid angle AR/h2 to this scat—
tering region at height h, so the peak power received by the receiver is
(ignoring absorption)

PT GT Vo eT eR AR
Pe = (26)
4 h4

where e_ is the receiver efficiency and AR is the effective area of the-
receiving array.

Thus by (22) and (26),

2 4 .1/3
2 16w PR h™ A

C =
n 0.38v PT GT eT eR AR

(27)

In the case of a circularly symmetric array, V = “(helé )2. L, where L' is the
pulse-length and 9142 is the half-power-half-width of ﬁe polar diagram, i,
ed

the same array is u for transmission and reception, er = ey, and Ag= GTA /
4w, so0
1662.25 B_ b2 A~>/3
2 R
c = 7 7 (28)
n G.“ e 9 L

Pp Gpep 8719

For a radar, it can be shown that Gp 6 2 5 nzlk, where 6;, is the half-power-

half-width, For the case in which the same radar is used for transmission and
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recept1on, Ehe effective half-power width reduces by v2, so 61/2=Bh/¢Q, and
Gy 61/2 = 1°/8. Then

) 128 A1/3 42 P,
c = (29)

n o g38relA LP

Either (30) or (31) can be used to estimate an from absolute measurements of
received power. This has been done, for example, by NASTROM et al. (1982) and
GOOD et al. (1982).

APPLICATION OF THE FORMULAE IN THE REAL ATMOSPHERE

Clearly (28) or (29) can be used to estimate C 2'w1thza radar, but

- unfortunately this does not give the structure comstant C,“ for the turbulence
itself. It would, if the turbulence filled the radar volume, but in reality
turbulence appears to occur in thin horizontal layers, with depths of 10s to
1008 of meters (e.g., VANZANDT et al., 1978; CRANE, 1980; WEINSTOCK, 1981, and
references therein). Thus the scattering within the radar volume is usually
.from a few thin turbulent layers, and the effective volume V should not be

Th2 8,/,°L as proposed earlier, but (Tfhzel ,L)*F, where F represents the
fraction of volume within the radar volume which is filled with turbulence.
VANZANDT et al. (1978) obtained a formula enabling F to be determined from a
knowledge of the mean wind shear (taken with a resolution of about a kilometer
or so), the standard iation of the fine~scale shear, and a "critical wind
shear" §.,. Then, if C (turb) is the refractive index structure constant for
the turbulence, and C ~—&(radar) is the value measured by the radar,

Cn (turb) = Cn (radar)/F. (30)

 VANZANDT et al.(1978) used meteorolog;gil data to estimate M (equation 13)
and then applied (4) and (30) to estimate Cp“(radar). They found that with a
value of L, equal to 10 m, good agreement occurred between the model and radar
observations, particularly in the stratosphere. Agreement was not so good in
the lower troposphere, because the model did not account for humidity fluctua-
tioms.

VANZANDT et al. (1981) improved the theory of VANZANDT et al. (1978) by
considering these humidity fluctuations, by considering small-scale fluctuation
in potential temperature, by letting the layer thicknesses be non—constant, and
also by using‘a more realistic distribution for the wind shears.

" VANZANDT et al. (1978) compared C, (radar) estimates from their model to
experlmental radar values, assuming Lo= 10 m. GAGE-et al. (1980) applied this
principle in reverse, using radar estimates of C,° to effectively estimate L,
(through equation 14). They then drew on an equation relating L, and the
turbulent energy dlsslpatlon rate €, to estlmate €, This relation was
(TATARSKI 1961)

L ' 31

where b was taken as a constant equal to unity, and S = (du/dz) is the shear
in Qhe mean wind, By replacing S§ with w B/Rj, where R; is the Richardson
number and w, is the Brunt-Vaisala frequency, and assumlng that turbulence
exists if Ri- R (crlt), (a_crltxcal value), they obtained, using L from (4),
' -1 3/2

. = [an(turb) . (a o R (erit) wg M ) 1

€ urb (32)

They -took RS (erit) = 1/4. Then eturhiS'the mean turbulent energy dissipation
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rate. GAGE et al, (1980) also calculated a quantity which they denoted by &,
which was the mean turbulent energy dissipation rate averaged over the radar
volume, They took

= _ 71
€=F “erurb @33)

From radar measurements GAGE et al. (1980) estimated C, (radar) Then
they made some reasonable assumptions concerning F, and so were able to esti~-
mate €ryrpand € from their radar data. M was calculated from meteorological
measurements of T and p, and it was assumed that the humidity terms in M were
unimportant. It should also be noted that F is dependent on wp, although this
may not be obvious in the simplified discussion given above. This dependence
of F on wy can cause some problems in estimating F, but GAGE et al. (1980) were
careful to reduce this error as much as was reasonable.

The technique outlined above is, at least in principle, the primary means
by which ¢ is obtained for the atmosphere using VHF radars. Variations on the
details of these formulae have been presented (e.g., CRANE, 1980; WEINSTOCK,
1981), but the principle remains similar - namely, to determine the fraction of
the radar volume actually filled by turbulence, and then to correct an values
measured by the radar to give e, .pand %,

In their model calcnlatlons, VANZANDT et al. (1978) chose L = 10 m. It
should be noted that L, is not equivalent to Ly in (19). If 8§ = /R is
substituted in (31), a8 was proposed, then

= 0,35 el/2 ,;"3/2 (34)

and comparison with (19) shows that
L, = .035 L (35)

The difference arises because of the different definition used to define
these "outer scales", L, is probably a better measure of the transition scale
between the inertial and buoyancy subranges, but L, is quite appropriate
wherever the formulae of TATARSKI (1961) are applled. This of course means
that (31) and (4) are only applicable for L, as defined by TATARSKI (1961).

The choice of L, = 10 m used by VANZANDT et al. (1978) corresponds to a choice
of LB of about 290 m. WEINSTOCK (1981) developed his theory relating € and

2(radar) using LB as an estimate of the sum of the thicknesses of the
turbulent layers in the radar volume, and achieved numerical results similar
(to within a factor of 2) to those of GAGE et al. (1980).

It is also possible to apply (32) for the mesosphere, using M. (equation
16) in place of M. However, there are some problems in estimating F for this
case. For example, CZECHOWSKY et al. (1979), using a 150 m resolution radar,
have shown that at mesospheric altitudes of ~80 km, the scattering layers can
be quite thick (up to ®1 km) and so F may approach unity. Further, at VHF the
appropriate scattering scales may be within the viscous rdnge, so (3) and hence
(29) may not be applicable. At HF and MF radar wavelengths (e.g., A = 150 m),
however, scatter should be from the inertial range and these formulae should be
appropriate.

DISCUSSION

Interestingly, RASTOGI and BOWHILL (1976) presented some formulae relating
turbulence parameters to backscattered power, and concluded that for the meso-
sphere the backscattered power was independent of €, They based their con-
clugions on dimensional arguments, However, these arguments were nowhere near
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as rigorous as those presented in this paper, and it is felt that (32) more
appropriately represents the relation between ¢ and an. The appropriate
generalized refractive index gradient can be obtained from (13) (troposphere
and stratosphere) or (16) (mesosphere), provided that scatter can be assumed to
be from within the inertial range of turbulence. It wil} be noted that (32) is
indeed dimensionally correct, since C,“ has umits of m~2/3,

Direct, independent measurements of ¢ and an(radar) have not been exten—
sively made, so it is difficult to coumment on the validity of these theories.
Certainly, however, the estimates of € presented by GAGE et al. (1980) are of
the correct order of magnitude.

Recently, HOCKING (1983a,b) has presented an alternative method for
measurement of turbulent energy dissipation rates with radars. This utilizes
not the signal strength backscattered, but the spectral widths of the received
signal, The principle of the method has been known for many years (e.g.,
ATLAS, 1964; FRISCH and CLIFFORD, 1974; FRISCH and STRAUCH, 1976) but the major
advance presented by HOCKING (1983a,b) was the accurate removal of both (i)
spectral broadening due to the motion of the mean wind across the finite beam-
width and (ii) spectral "broadening” (or ™narrowing" in some cases) due to
vertical wind shears in the horizontal wind. These two factors have previously
been considered separately (e.g., ATLAS, 1964), but never coherently. HOCKING
(1983a) also illustrated that there was a necessity to distinguish between
vertical and horizontal fluctuating motions, and showed how this could be done,
This tethnique was illustrated using an HF radar to measure energy dissipation
rates in the mesosphere.

The technique can readily be applied at VHF, and the author is currently
doing this with the "SOUSY" radar (ROTTGER et al., 1978) in West Germany. The
estimates of ¢ appear to be of the correct order of magnitude, and will be
reported separately in a later paper. Application of this method can allow
independent comparisons of & and an(radar), and therefore can check the equa-
tion (32). This new method of obtaining involves less assumptions than (32),
and may prove to be a more reliable method in the future, Previously, some
authors made comparisons of signal fading time and received power (e.g., FUKAQ
et al., 1980a,b; RASTOGI and BOWHILL, 1976b), but it is difficult to decide
how much the fading time (or equivalently the spectral width) is contaminated
be beam- and wind-shear broadening. Therefore these measurements cannot really
be regarded as comparison of € and an.

For approximate estimates of the effects of beam-broadening, the following
formula may be useful. If 0;,,is the half-power-half-width of the effective
radar beam, and V is the mean velocity of the scatterers tangential to the beam
(usually this amounts to the horizontal velocity), then the half-power spectral
half-width due to beam broadening is

£199 = (1.002/x el/ZV (36)

1/

This is very nearly exact, provided beam widths of less than 3° - 4° are
used. A similar formula was presented by ATLAS (1964), and was originally
derived by HITSCHFELD and DENNIS (1956). [Atlas gives an equation o~ 0.3 ov.
However, this equation is for the case in which the same radar is used for
transmission and reception, and © is tke half-power—full-width for the trans~
mitter (or receiving) polar diagram only. Thus © in this equatiom is equal to
2v2 times 8,,.in (36), since © othere is the half-width for the effective
polar diagram (transmitter and réceiver polar diagram included).] For proper
removal of beam-broadening and shear-broadening, however, the complete treat-
ment presented by HOCKING (1983a) is recommended.

As discussed in the introduction, there may be problems with the assump-
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tion of inertial range turbulence, and it is useful to list some of these.
Specular reflection has already been mentioned, and the cause of this has not
been fully explained, It is sometimes assumed to be a process separate from
turbulence, but this may not be. For example, the model proposed by BOLGIANO
(1968), which was discussed earlier, may be important. 1In this case, tilting
the radar beam from the vertical may cause the layer to disappear, since one of
the assumptions of Bolgiano's model was that turbulence mixes the layer so well
that no parameters such as density vary with height within the layer. Thus the
generalized refractive index gradient within the layer is close to zero, and
very little radio-wave scatter from the turbulence itself cam ocecur. If such
layers do exist, and are not seen by tilted VHF radars, this could lead to
biases in estimates of ¥ for the atmosphere., For vertically beamed radars, the
relation between the specular scatter and the degree of turbulence may not be
simple. Investigations of this matter await more experiments. The possibility
that turbulence could be anisotropic even at scales of meters has also been
briefly mentioned. Multifrequency experiments may help resolve some of these
issues,

CONCLUSIONS

If it is assumed that radio-wave scatter is from inertial range turbu-
lence, then the back-scattered power and the energy dissipation rate can be
simply related through equations (28) (or 29), (30), (32), (16), (19) and (33).
The derivation of these equations assumed inertial range isotropic turbulence,
and the scales within which this is probably true are indicated in Figure 1.
Congiderable experimental work remains to be done to determine when these rela—
tions are valid, and when they break down.
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